TOOL FOR TRAINING OF WATER USERS’ COMMITTEES

Introduction

1. **Welcome and Introductions**
 - To help the facilitator(s) to introduce him/her self/themselves and get to know the participants
 - To help the participants get to know each other
 - To build trust and develop a safe environment for the duration of the workshop
 - Duration: 10 minutes

2. **Training goals and expectations**
 At the end of the session, participants will be able to:
 - Describe the objectives and agenda of the workshop
 - Share their institutional affiliation and their expectations for the workshop
 - Answer a series of basic questions concerning knowledge related to water resources and water infrastructures management
 - Duration: 10min

3. **Setting ground rules**
 To determine how the participants and facilitator(s) will be together during the workshop and what the expectations are about how participants behave in order to create their own safe space and unique culture for exchange and learning.
 - To highlight that these norms create the workshop climate. To elicit norms or ground rules from the group to agree on and hold each other accountable for. Participants should call out their suggestions while the facilitators chart them.
 - Duration: 10min

KNOWLEDGE ABOUT WATER AND IWRM

PRE-TEST
Objective: To assess participants’ level of knowledge in Water management and especially on IWRM in order to adapt the content of the training to the current level (Duration: 15 minutes)

QUESTIONS 1-9: Use true or false

1. Among all person’s need, water should have the prime place.
2. Water point is both for human being, livestock and crops we need only good organization for sharing.
3. Water collection is normally and should remain children task as really parents are doing other things
4. In case the water management belongs to the private operators, community members should review its role and limit themselves to paying for water.
5. The successful water management highlights women’s role as important in water users committees.
6. Water from the protected source is safe for drinking, we don’t need additional treatments.
7. To allow increased access to water, water should remain for free, no payment is needed.
8. Environment conservation has a strong link with sustainability of water sources.

Multiple choices: circle all correct answers

Which of the following are good practices for maintaining water infrastructures sustainable?
- Construction of fence around water point
- Plating selected trees upstream of water sources
- Digging trenches to help infiltration of water and avoid erosion
- Grazing cows and other livestock nearby water point

Which of the following are water user groups’ roles?
- Collecting and management of contributions
- Daily management of water points
- Monitoring the implementation of agreement and decision in relation to the water management
- Ensure the water infrastructures are managed in sustainable way
- Advocate for water users better service delivery
- Advice water users towards sustainable and profitable water management
- Arbitrate conflict among water users groups if any
- Fix price of water per jerry can
- Reparation of pipes and other devices when broken

Which of the following can be community contribution when a new water facility is being put in place?
- Purchasing pipes for water scheme
- Partaking to feasibility study
- Digging trenches for mitigating erosion upstream water sources
- Bearing pipes pass through their piece of land
- Bearing space for constructing water points and water tanks
- Digging trenches for pipelines
- Paying for water
- Constructing fences around water infrastructures

The following are responsible for water collection
- Men
- Women
- Children
- Both

12. The following are qualities of pure drinking water
- White color
- Colorless
- Without smell
- Tasteless
- Good taste
- Always clear
13. Appropriate water management is done through:
 • Strengthening existing water point committees
 • Community management of water infrastructures
 • Management by sole private operators
 • Management by community and private operator
 • Fixing high price for recovering investment expenses

TOPIC ONE: WATER, SOURCE OF LIFE (IMPORTANCE OF WATER IN DAY-TO-DAY LIFE)

Objectives:

 • Examine how to improve water infrastructure management
 • Importance of potable water for human being, livestock and crops
 • Consequences related to the use of dirty water
 • How to access pure drinking water

GROUP WORK

To form 4 groups and task them to perform the following reflection activities

Group 1:

 • Describe the importance of water for human being and animals including livestock
 • Describe how dirty water can bring diseases and how e different activities and action can dirty water,
 • Consequences linked to the use of dirty water

Group 2:

 • Describe different activities and practices towards improving water quality/maintaining water proper for use
 • Based on the findings above, what can be done as local contribution from community members?

Group 3:

 • Describe the characteristics of pure drinking water
 • What can be done to treat water for drinking?
 • What are different sources of water? Are they closer to every community member if not what are alternatives? Describe different activities for community to initiate rain water harvesting.
 • Minimum required quantity for individual use at household.

Group 4: Fetching and storage of water
What can be done for maintaining water proper from fetching and during storage?

The facilitator takes time to explain and to give clarification after plenary discussion of group findings

- Water is essential to the human being; life cannot be possible without water. Human body is ¾ made out of water. Water is used for drinking, bathing, cooking, washing, watering crops, livestock, etc.
- However drinking water must be proper: colorless, tasteless, without smell, and clear.
- Water that is not proper for drinking can be treated before drinking (using chemical products, boiling or using filters.). It is always good to treat water before drinking.
- Human being needs a minimum of 20 liters of water per day for domestic use as individual.
- Water is used also for productive activities (in making bricks and other similar handcraft activities, watering crops and livestock etc.)
- For increased access to water for multiple use (domestic and productive) household can harvest water from roof.
- Dirty water can bring diseases. The most common are diarrhea, worms,
- Some human actions can contribute to dirty water, namely we can mention open defecation, construction of latrines nearby water sources; washing clothes in water points,…

Note: If a nurse or health center representative is participating, the facilitator should try to involve him for explaining the 2 last points.

TOPIC TWO: WATER RESOURCES AND ENVIRONMENT MANAGEMENT

Objectives:

- Clarifying the relation between environment and existing water resources
- Define different practices to protect water resources from contamination and scarcity

Tools Communication cards

- The facilitator is mixing questionnaire cards of different colors; each card corresponds to question to discuss.
- Participants stand on circle and the facilitator scattering question cards
- He invites one after one to choose a question and to try respond to it

The questions are following:

- Explain what rain is and where it comes from?
- Explain the origin of water sources and why they can be scarce in dry period?
- How the human activities can dirty the water sources?
- What can be done to protect water sources from contamination? (describe different activities)
• How human activities can contribute to the decrease of water quantity in the sources?
• What can be done to protect water source from scarcity?
• How community can organize itself to protect water sources?
• What are activities for environment protection that can increase water table and therefore water within sources?

TOPIC THREE: MANAGEMENT OF WATER INFRASTRUCTURES

Objectives:

- Identify role to be played by community members in private partnership,
- Importance of maintaining proper and sustainable water infrastructures
- Discuss different practices, behaviors and actions to maintain proper and to ensure sustainability of water infrastructure
- Help participants choosing the management model based upon deep analysis

Activity:

- Ask participants to identify different ways of efficient managing water infrastructures,
- Write on the flipcharts different ways identified,
- Ask participants to form groups corresponding to different management model identified and each group to choose management model that seem to be suitable,
- Within group, identify strength and weakness corresponding to the selected management model (this is likely to have less weakness and a lot of strengths),
- After 15 minutes, the facilitator call together the groups in training room and facilitate discussion among different groups till they are all convinced on one management model.

Form 3 groups among participants and task them to perform reflection around the above themes

Group 1:

- Identify community role during a water supply project and explain why this role is relevant
- Once the infrastructures are installed, what can be the community role in the public private partnership management system?
- How community can organize itself to perform those different mentioned roles?

Group 2:

- Why is it important to maintain water infrastructures? Provide different illustrative cases to support your response.
- In the public private partnership management system, how do you think the sustainability could be achieved?
- How do you think water point committees can help water users group to manage their water facilities? (identify activities that can be performed in that regard)
Group 3:

- Identify practices that community should own/ avoid to ensure sustainability of water infrastructures/to maintain water quality?
- What are appropriate behaviors of water users during fetching water that can contribute to maintain sustainable water infrastructures?
- Who are fetching water (children, young people (18-30), women and girls, elderly people)? And why?
- Who do you think should be concerned for ensuring sustainability and why?

Facilitator notes:

After plenary discussion, present the committees role to supplement the group findings

TOPIC FOUR: INTEGRATED WATER RESOURCES MANAGEMENT

Objectives:

To help users representatives understanding the aspect of water integration and how they can work together to satisfy each one’s interest avoiding conflicts.

What is the IWRM?

Activity 1: Form 3 mixed groups and assign them to respond to the following questions.

1. What is meant by integrated water resources management?
2. Why is it so important?
3. What are we losing without it? What are the gains to be made from introducing it?
4. Assign them to identify different uses of water and the links between them,
5. Ask participants to identify the most important uses among those identified and to justify the selection,
6. Ask to come up with the collaboration that can maximize the efficient integrated management,

Activity 2: After presentation, debate animated by the facilitator about IWRM
Integrated water management means that all the different uses of water resources are considered together.

Water allocations and management decisions consider the effects of each use on the others. They are able to take account of overall social and economic goals, including the achievement of sustainable development.

The basic IWRM concept has been extended to incorporate participatory decision-making. Different users groups (farmers, communities, environmentalists,) can influence strategies for water resources development and management that brings additional benefits, as informed users apply local self-regulation in relation to issues such as water conservation and catchment protection far more effectively than central regulation and surveillance can achieve.

IWRM is a systematic process.

Integrated water resources management is a systematic process for the sustainable development, allocation and monitoring of water resource use in the context of social, economic and environmental objectives. It is different from the sectoral approach applied in many countries...

When responsibility for drinking water rests with one agency, for irrigation water with another and for the environment with yet another, lack of cross-sectoral linkages leads to uncoordinated water resource development and management, resulting in conflict, waste and unsustainable systems.

IMPORTANT PRINCIPLES IN IWRM

Objectives:
Help participants understanding important principles in IWRM

Activity: assess how community members are working to implement important IWRM principles. Create 4 groups and assign each group a principle for it to think how community member are working to accomplish it, to identify gaps and key roles/ recommendations to overcome them.

A meeting in Dublin in 1992 gave rise to four principles that have been the basis for much of the subsequent water sector reform.

The International Conference on Water and Environment, Dublin, Ireland, January 1992.

Fresh water is a finite and vulnerable resource, essential to sustain life, development and the environment.

Water development and management should be based on a participatory approach, involving users, planners and policymakers at all levels.

Women play a central part in the provision, management and safeguarding of water.

Water has an economic value in all its competing uses and should be recognized as an economic good.
Facilitator’s notes

1st Principle: Fresh water is a finite and vulnerable resource, essential to sustain life, development and the environment.

Effective management of water resources demands a holistic approach, linking social and economic development with protection of natural ecosystems. Effective management links land and water uses across the whole of a catchment area or groundwater aquifer.

The notion that freshwater is a finite resource arises as the hydrological cycle on average yields a fixed quantity of water per time period. This overall quantity cannot yet be altered significantly by human actions, though it can be, and frequently is, depleted by man-made pollution. The freshwater resource is a natural asset that needs to be maintained to ensure that the desired services it provides are sustained. This principle recognizes that water is required for many different purposes, functions and services; management therefore, has to be holistic (integrated) and involve consideration of the demands placed on the resource and the threats to it.

The integrated approach to management of water resources necessitates co-ordination of the range of human activities which create the demands for water, determine land uses and generate waterborne waste products. The principle also recognizes the catchment area or river basin as the logical unit for water resources management.

In a group, based on the previous lesson, ask participants to identify key role they have to play in accordance to the 1st principle.

2nd Principle: Water development and management should be based on a participatory approach, involving users, planners and policymakers at all levels.

The participatory approach involves raising awareness of the importance of water among policy-makers and the general public. It means that decisions are taken at the lowest appropriate level, with full public consultation and involvement of users in the planning and implementation of water projects.

3rd Principle: Women play a central part in the provision, management and safeguarding of water

This pivotal role of women as providers and users of water and guardians of the living environment has seldom been reflected in institutional arrangements for the development and management of water resources.

Positive policies
Acceptance and implementation of this principle requires positive policies to address women’s specific needs and to equip and empower women to participate at all levels in water resources programs, including decision-making and implementation, in ways defined by them.

It is widely acknowledged that women play a key role in the collection and safeguarding of water for domestic and – in many cases – agricultural use, but that they have a much less influential role than men in management, problem analysis and the decision-making processes related to water resources. The fact that social and cultural circumstances vary between societies suggests that the need exists to explore
different mechanisms for increasing women’s access to decision-making and widening the spectrum of activities through which women can participate in IWRM.

IWRM requires gender awareness. In developing the full and effective participation of women at all levels of decision-making, consideration has to be given to the way different societies assign particular social, economic and cultural roles to men and women. There is an important synergy between gender equity and sustainable water management. Involving men and women in influential roles at all levels of water management can speed up the achievement of sustainability; and managing water in an integrated and sustainable way contributes significantly to gender equity by improving the access of women and men to water and water-related services to meet their essential needs.

4th Principle: Water has an economic value in all its competing uses and should be recognized as an economic good

Within this principle, it is vital to recognize first the basic right of all human beings to have access to clean water and sanitation at an affordable price.

Water has a value as an economic good as well as a social good.

Many past failures in water resources management are attributable to the fact that the full value of water has not been recognized and has led to wasteful and environmentally damaging uses of the resource.

Allocation

Treating water as an economic good is an important means for decision making on the allocation of water. This is particularly important when extending supply is no longer a feasible option.

Water has a value as an economic good as well as a social good. Many past failures in water resources management are attributable to the fact that the full value of water has not been recognized. In order to extract maximum benefits from available water resources, there is a need to change perceptions about the value of water.

Value and charges are two different things and we have to distinguish clearly between valuing and charging for water.

The value of water in alternative uses is important for the rational allocation of water as a scarce resource, whether by regulatory or economic means.

Charging (or not charging) for water is applying an economic instrument to support disadvantaged groups, affect behavior towards conservation and efficient water usage, provide incentives for demand management, ensure cost recovery and signal consumers’ willingness to pay for additional investments in water services.

Treating water as an economic good is an important means for decision making on the allocation of water between different water use sectors and between different uses within a sector. This is particularly important when extending supply is no longer a feasible option.

In IWRM, economic valuation of alternative water uses gives decision makers important guides to investment priorities. It should not though be the only consideration. Social goals are important too. In a water-scarce environment, would it be right, for example, that the next water resource developed should be assigned to a steel-manufacturing plant because the manufacturer can afford to pay more for the water than the thousands of poor people who have no access to safe water? Social, economic and environmental goals all play a part in IWRM decision-making.
Social and economic benefits from water use sectors.

These are generally obvious in terms of food production, energy production, drinking water, jobs, recreation, etc, but the relative value of these benefits is more difficult to assess. When there is competition for water resources it brings into the open the need to justify the allocation of water to one user rather than to another. This value assessment should take into account both the benefits and the negative impacts. The input from users, politicians and society in general is necessary as the allocation may not be most efficient when valued in economic terms alone or acceptable when made only on political grounds.

Domestic use
- Increased security of domestic water supplies
- Reduced conflicts between water users
- Increasing recognition of the economic value of water leading to more efficient use
- Increased use of water demand management
- Improved waste management considering environmental effects and human health and hygiene
- Reduced costs of providing domestic water services

Agriculture
Implications for agriculture of water use by other sectors considered in the management process:
- Rational decision making on water use in which costs and benefits are considered
- More effective use of water within the sector and hence increased returns
- Multi-purpose water resource development and cross-sectoral recycling (e.g. use of reclaimed municipal wastewater for irrigation)

Environment
- A voice for environmental needs in water allocation
- Raising awareness among other users of the needs of ecosystems
- More attention to an ecosystem approach to water management
- Protecting upper catchments, pollution control, and environmental flows
- Safeguarding common resources such as forests, wetlands and fishing grounds on which communities depend
River Basin Organizations

The concept of integrated water resources management has been accompanied by promotion of the river basin as the logical geographical unit for its practical realization.

Institutional requirements

In order to bring IWRM into effect, institutional arrangements are needed to enable:
The functioning of a consortium of stakeholders involved in decision making, with representation of all sections of society, and a good gender balance;
Water resources management based on hydrological boundaries;
Organizational structures at basin and sub-basin levels to enable decision making at the lowest appropriate level;
Government to co-ordinate the national management of water resources across water use sectors.

CONCLUSION

As the Global Water Partnership puts it: “IWRM is a challenge to conventional practices, attitudes and professional certainties. It confronts entrenched sectoral interests and requires that the water resource is managed holistically for the benefits of all. No one pretends that meeting the IWRM challenge will be easy but it is vital that a start is made now to avert the burgeoning crisis.”

What it does demand is that people try to change their working practices to look at the bigger picture that surrounds their actions and to realize that these do not occur independently of the actions of others. It also seeks to introduce an element of decentralized democracy into how water is managed, with its emphasis on stakeholder participation and decision making at the lowest appropriate level.